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Abstract

We present a case for the use of Reinforcement Learning (RL) for the design of physics
instrument as an alternative to gradient-based instrument-optimization methods. It’s appli-
cability is demonstrated using two empirical studies. One is longitudinal segmentation of
calorimeters and the second is both transverse segmentation as well longitudinal placement
of trackers in a spectrometer. Based on these experiments, we present a case of how such an
approach can present an alternative to differentiable programming or surrogate-based differ-
entiable design optimization. The exploratory nature of the algorithms inherent in RL will
allow us to achieve that. We then discuss the road map of how this idea can be extended into
designing very complex instruments. The presented study sets the stage for a novel framework
in physics instrument design, offering a scalable and efficient framework that can be pivotal for
future projects such as the Future Circular Collider (FCC), where most optimized detectors
are essential for exploring physics at unprecedented energy scales.

1 Introduction

The study of the fundamental nature of the universe relies on very complex physics detectors and
instruments in the modern era. These devices, essential for probing the smallest constituents of
matter, detecting elusive particles, and testing fundamental theories, are often highly specialized
and extraordinarily expensive. For instance, only the construction and materials for the Com-
pact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) amounted to 500
million Swiss Francs. Designing these instruments is a monumental challenge, as every compo-
nent must be optimized for maximum efficiency, sensitivity, and precision to ensure the greatest
scientific output. The design parameter space of these instruments is highly complex and multi-
dimensional, requiring specifications for a wide range of variables, including the type, composition,
and geometry of the materials used, as well as their spatial arrangement. Additionally, factors
such as thermal stability and radiation hardness must be considered, all while ensuring that the
components can withstand the extreme operational conditions often encountered in high-energy
physics experiments. This intricate interplay of parameters forms a vast and challenging design
optimization problem, where sometimes small adjustments can have significant impacts on the
overall performance and sensitivity of the instrument.

Recently, the use of Machine Learning (ML) has exploded in different areas for solving a vast
set of optimization tasks, including high energy physics as well. Machine learning algorithms,
particularly those involving deep learning, have proven highly effective in analyzing large datasets,
identifying complex patterns, and making predictions. In high energy physics, where experiments
often generate immense amounts of data, machine learning techniques are invaluable for tasks
such as particle identification, event classification, and anomaly detection. These approaches not
only enhance the precision of experimental results but also accelerate the process of discovery
by automating time-consuming calculations and allowing researchers to explore new theories and
phenomena with greater efficiency.

Building on the advances in the machine learning techniques, investigators recently began
exploring machine learning also for the optimization of physics instruments. Here, the focus has
been on fine tuning the design parameters along the direction of the gradient, similar to how neural
networks are trained. This is either done through differentiable programming i.e., modifying the
software code itself to make it differentiable or through a differentiable surrogate. In the later
case, a neural network is trained as a surrogate for the complex simulator. By nature, the neural
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network is differentiable and one can backpropagate through it to tune the design parameter to
increase the performance of the instrument.

Differentiable optimization methods, while useful, present two significant challenges for de-
tector design and optimization. First, these methods tend to be inherently local, often leading
to solutions trapped in local minima. This issue is particularly pronounced when tuning design
parameters for instruments, where the parameter space is typically more structured and less ran-
dom. In contrast, neural network training often deals with highly randomized parameters, where
techniques like stochastic gradient descent can more effectively navigate out of local minima. Alter-
native approaches, such as Bayesian Optimization, mitigate the issue of local minima by exploring
the parameter space more broadly. However, they tend to be computationally less efficient and
don’t scale to high-dimensional problems. Moreover, both differentiable and Bayesian Otimization
methods are limited to tuning pre-defined parameters within an established model framework.
For instance, while these methods are effective in adjusting the thickness of different layers in a
calorimeter, they are unable to address the more complex, combinatorial nature of instrument
design. In the case of calorimeters, neither approach allows for the optimization of the material
selection or the number of the detector layers, which remains a crucial challenge in automated
design of such complex systems.

The limitations of these methods become evident in the context of real-world detector design.
As an example, back in the early 2000’s, the design of the LHCb detector was reoptimized due to
cost constraints (Schneider, 2000). The tracking stations at the dipole magnets were removed. This
reduced multiple scattering and actually improved the performance of the detector (despite being
cheaper). Similarly, at the NA62 experiment at CERN (NA62 Collaboration, 2017), a secondary
downstream calorimeter (HASC2) was installed as it provided further veto capabilities to reject the
unwanted backgrounds (NA62 Collaboration, 2022). This was discovered during the experiment’s
run, though it could, in principle, have also been identified in the simulation. Differentiable
methods of optimized designs of physics experiments will not be able to find such solutions.

To overcome these challenges, this work instead explores the use of RL for instrument design,
as RL’s exploratory nature helps avoid local minima by balancing exploration and exploitation.
Second and more importantly, unlike gradient-based methods, RL is not restricted to a predefined
set of parameters and can design instruments from scratch while navigating complex, non-convex,
and combinatorial spaces. This approach has already proven successful in other fields, such as
chip floor planning (Mirhoseini et al., 2022). Here, the authors used Proximal Policy Optimiza-
tion (Schulman et al., 2017) to place various chip elements one after the other. In under six hours,
the RL method outperforms the human design, which takes weeks manually. The method is now
actively used at Google for the design of their TPUs (Tensor Processing Units). The methodol-
ogy has also been applied on other problems such as material design (Guo et al., 2021), and for
molecule design (Zhou et al., 2019).

Through the empirical studies as well as the arguments presented, the aim is to demonstrate
the feasibility of using RL for the automated design of physics experiments, and identify the
most effective RL strategies for different types of physics problems and This will set the stage for
the development of new physics instruments by using machine learning to explore and optimize
complex design configurations from scratch. This will be instrumental for future projects like the
Future Circular Collider (FCC), where machine learning based instrument design will prove highly
invaluable to allow probing new physics at unprecedented energy scales.

2 Related work

The most notable use case in physics instrument optimization has been the optimization of the
Muon Shield for the SHiP Experiment. Using a series of tapered magnets, the goal of Muon Shield
is to reduce the muon flux by six orders of magnitude. Each of the magnets is parameterized
by seven values, which represent the dimensions (such as length, thickness, etc). The problem
is non-trivial and formulates a complex optimization task. A high energy muon can be deflected
in a longer yet simpler curved path but a lower-energy muon might go in a zigzag trajectory
needing multiple magnets. The initial design iterations were performed with the help of Bayesian
Optimization (Baranov et al., 2017). Later, Shirobokov et al. (2020) proposed a method to employ
neural surrogates to allow gradients on the design parameters. Here, a Generative Adversarial
Network was trained as a surrogate model for the Geant4 simulator (GEANT4 Collaboration,
2003). The surrogate is a neural network, hence one can back-propagate through it fully to tune
the design parameters.

Another example of the use of machine learning for detector optimization has been at the pro-
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posed Electron Ion Collider (EIC) (ePIC Collaboration, 2016). Here, dual ring-imaging Cherenkov
(RICH) detector was optimized for improved π/K separation. This was also performed via
Bayesian Optimization. Later, detector optimization for one of the detectors at the EIC called
EIC Comprehensive Chromodynamics Experiment (ECCE) was also performed via Bayesian Op-
timization. Dorigo et al. (2023) provides a comprehensive overview of current and past efforts
in applying machine learning for instrument optimization, with a primary focus on differentiable
methods (but also discusses Bayesian Optimization). It is a remarkable read and delves deeply
into the advocated methodology as well as many associated examples. This publication originates
from the MODE Collaboration (2024), a group of physicists and machine learning practitioners
dedicated to advancing design optimization through differentiable programming. The collabora-
tion’s objectives encompass a broad range of applications, from optimizing detectors in particle
physics to industrial uses of radiation detection technology.

The first example of differentiable programming for detector optimization is presented by Strong
et al. (2024). The authors presented an alternate Software to Geant4 with gradient implementations
of the various functions used for the muon topography. Similarly, Aehle et al. (2024) explored
whether operator overloading can be used to make Geant4 directly differentiable.

3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning focused on training agents to make
sequences of decisions by interacting with an environment (illustrated in Figure 1). The process
unfolds as a series of interactions between the agent and the environment, described mathematically
as follows:

• State (St): At each time step t, the agent observes the state of the environment, denoted as
St. The state encapsulates all the relevant information needed for decision-making at that
point in time. However, this state may not always be fully accessible to the agent.

• Observation (Ot): Instead of directly observing the full state St, the agent may receive an
observation Ot, which provides partial information about the environment. This is common
in scenarios where the environment is partially observable, meaning the agent has limited
or noisy access to the underlying state. In contrast, in a fully observable environment, the
observation Ot is equivalent to the true state St.

• Action (At): Based on the observed information (either St in fully observable settings or Ot

in partially observable settings), the agent selects an action At from a set of possible actions.
The choice of action is determined by the agent’s policy, which is the strategy it follows.

• Reward (Rt): After executing action At, the agent receives feedback in the form of a reward
Rt. This scalar value indicates how good or bad the action’s outcome was in relation to the
agent’s objective.

• Next State (St+1): As a result of the action At, the environment transitions to a new state
St+1, which the agent observes at the next time step.

This interaction sequence can be written as:

(St, At, Rt, St+1)

The agent’s goal is to maximize the cumulative reward it collects over time, often referred to as
the return. The return Gt is defined as the total discounted reward from time step t onward:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 , (1)

where γ ∈ [0, 1] is the discount factor that determines the present value of future rewards. A
smaller γ places less emphasis on future rewards, while γ = 1 corresponds to no discounting.

The agent selects actions based on a policy π, which is a mapping from states or observations
to probabilities of actions. In a fully observable environment, the policy depends directly on the
true state St, and is defined as:

π(a|s) = P (At = a|St = s),
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where π(a|s) denotes the probability of taking action a in state s. However, in partially observable
environments, the policy is based on the agent’s observation Ot or its belief about the state.

The optimal policy π∗ is the policy that maximizes the expected return from each state or
observation. For fully observable environments, it is expressed as:

π∗(s) = argmax
π

Eπ [Gt|St = s] ,

while in partially observable settings, the expectation may be conditioned on the observation Ot

or the agent’s belief about St.
The reward Rt is a scalar signal provided by the environment as feedback for the action At. It

represents the immediate benefit or cost associated with the action and guides the agent toward
its objective. In partially observable environments, the agent must infer the underlying state St

from observations Ot to learn an effective policy.
Together, the components (Ot, St, At, Rt, Ot+1, St+1) define the dynamics of the agent’s in-

teraction with the environment. In fully observable scenarios, these dynamics are modeled as a
Markov Decision Process (MDP). In partially observable scenarios, they are generalized to a Par-
tially Observable Markov Decision Process (POMDP), where the agent maintains a belief state—a
probabilistic representation of the true state based on its observations and past actions.

In RL, the learning paradigm relies heavily on trial and error, with agents actively interact-
ing with their environment to refine their decision-making strategies. Unlike traditional learning
methods, where learning is often passive, RL agents must balance exploiting known strategies
that yield high rewards and exploring new actions that might lead to better long-term outcomes.
This balance, known as the exploration-exploitation trade-off, is a cornerstone of RL and is often
implemented through strategies like ϵ-greedy policies or entropy-based exploration. RL’s inherent
exploratory nature helps agents avoid getting trapped in local minima, a common issue in opti-
mization techniques that focus on refining parameters locally. By sampling a wide range of states
and actions, RL agents can escape suboptimal regions and discover global optima. Moreover, RL
does not assume a fixed structure for the optimization landscape, enabling exploration across vast
and complex spaces, including non-convex, combinatorial, and highly discontinuous environments.
This adaptability allows RL to tackle challenges in dynamic and intricate settings, making it a
powerful framework for solving complex decision-making problems.

To solve these problems effectively, RL algorithms use a variety of techniques, such as value-
based methods (e.g., Q-learning), policy-based methods, and hybrid approaches like actor-critic
algorithms. Value-based methods focus on estimating the value of being in a particular state,
helping the agent understand the long-term benefits of certain actions. Policy-based methods, on
the other hand, focus on directly learning a policy for action selection, which can be beneficial in
environments with continuous action spaces. Combining these approaches, actor-critic algorithms
enable an agent to simultaneously estimate the value of states and improve its policy, offering a
more robust way of handling complex decision-making scenarios.

Beyond theoretical appeal, RL has demonstrated remarkable success in real-world applications,
from robotics, where agents learn motor skills or navigation tasks autonomously, to video games
and simulations, where RL agents can achieve superhuman performance. Moreover, RL has been
applied in resource management, financial trading, and even healthcare, where personalized treat-
ment strategies are developed based on patient data. Notably, RL is integral to systems like
AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2018), where agents learn to master
games like Go and chess without human input, relying purely on self-play.

RL is particularly effective for problems where the solution space is intricate or difficult to model
with gradient-based methods, such as instrument design, where multiple design configurations need
to be explored simultaneously. This method has already been employed for other problems (in
particular, chip placement).

4 Empirical Studies

Two instrument design studies have been conducted to demonstrate the applicability of the pro-
posed methodology. The first is longitudinal segmentation of calorimeters, which is presented in
Section 4.1. The second is longitudinal segmentation as well as transverse segmentation of tracking
stations in spectrometers and is discussed in Section 4.2. The results are also discussed in the same
sections. In both experiments, the agent is tasked with placing the layers one after the other until
either the design is complete or the agent runs out of resources. This is demonstrated in Figure 2.
The continuous action determines ∆z until the next layer of the instrument and a discrete action
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Figure 1: Agent-environment interaction in Reinforcement Learning (adapted from Sutton and
Barto (2018))

chooses the parameters of the layer, such as thickness or granularity. At the final time step, the
design score (S) of the instrument is computed and in the intermediate steps, the awarded reward
is 0.0 except in cases where the layers placed are too close to each other, in which case a penalty
is awarded. Full episode Monte Carlo is used for optimization as opposed to Temporal Difference
Learning to simplify the training process, and γ (Equation 1) is taken as 0.0.

In both experiments, we utilize Proximal Policy Optimization (PPO) (Schulman et al., 2017),
an RL algorithm designed for efficient and robust policy optimization. PPO is an on-policy algo-
rithm, meaning it learns exclusively from the most recent interactions with the environment rather
than employing experience replay. A defining feature of PPO is its clipped objective function,
which prevents excessively large updates to the policy, ensuring stable and reliable learning while
allowing for incremental improvements. This simplicity and stability make PPO well-suited for
tasks requiring flexible action-space handling, such as instrument design. Moreover, PPO supports
both discrete and continuous action spaces, further emphasizing its versatility. In our implemen-
tation, the policy and value networks are two independent fully connected neural networks, each
with two U -dimensional hidden layers, ensuring a clean separation of learning objectives without
weight sharing. U is 256 in the calorimeter design and 512 in the spectrometer design.
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Figure 2: Reinforcement Learning for instrument design

4.1 Calorimeter Design

In particle physics experiments, a calorimeter is one of the main methods used to measure the
energy of particles, with the other being a spectrometer. A calorimeter measures energy by fully
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absorbing the particles, whereas a spectrometer determines momentum by analyzing the deflection
of particles in a magnetic field, based on their momentum and charge. Calorimeters provide a direct
measurement of total energy, while spectrometers are used to infer momentum through particle
trajectories.

The calorimeters are generally built as sampling devices where active readout layers and ab-
sorber materials are alternated. Generally the materials used are also different. However, in
this study, a homogeneous sampling calorimeter was used. The simulations were performed us-
ing Geant4 and all the resulting data was captured, including the individual deposits as well as
their spatial locations. Given that it is a sampling calorimeter, it allowed reuse of the same set
of simulations across designs, saving computation time. Generally resampling is also an expensive
operation, however, CUDA was leveraged to deploy the simulation on a Nvidia GPU, enabling
testing of one design in ∼ 0.02 seconds. When testing any configuration, first calibration needs to
be performed, which was done over 50000 samples consisting half of photons and half of charged
pions using similar strategy as what was used by Qasim et al. (2022).

The number of cumulative budget of the active layers is capped at 6.0, with the RL agent having
control over their placement, deciding where to position each active layer sequentially. Further,
the agent can also choose the type of sensor from a set {Type1, Type2, Type3}, where type 1 the
cheapest and least performant and type 3 is the most performant but most expensive. The three
types have a budget of 0.12, 0.15 and 0.20 respectively. Putting together three actions for the logits
of the discrete action and one for the continuous action, the action space is four dimensional. The
RL agent is then tasked with selecting the optimal combination of active layers by using a reward
function. The current configuration of active layers that the agent has selected so far is the state of
the environment. However, the experiment is designed to be partially observable. Therefore, only
the longitudinal location the agent is currently at and the thickness budget used so far is employed
as Ot. This implies that the observation space is a 2D vector.

The performance of the energy measurement in a calorimeter is quantified by mean-corrected
energy resolution, defined as standard deviation of the response (Epred/Etrue) divided by the mean.
A lower value signifies better performance. The score (S) is based on the energy resolution of the
calorimeter for both hadronic and electromagnetic particles and is defined as

S ·10 = −max(0,Σem50−8)−max(0,Σem100−5)−max(0,Σhad50−25)−max(0,Σhad100−18) , (2)

with Σ representing the mean-corrected resolution for different particles in percentage. The
resolution is capped at a maximum of 150%. The subscripts em and had represent the electro-
magnetic and hadronic particles, respectively and the subsequent number denotes the energy of
the test particles in GeV. For measuring these metrics, 2500 particles of each type are employed
(104 in total, not including the calibration set). The reward function is linear in resolution and
drops to zero once the design reaches the reference resolution, and this was chosen as value that is
slightly better than what was roughly expected in a reasonable design. The design score is given
as the reward for the agent only at the last time step. In the intermediate time steps, a penalty
of −0.5 is awarded if the agent places two active layers less than 10 mm apart. The action is also
capped at 10 mm.

Figure 3 visually demonstrates the learning process of the agent. The reward is shown as a
function of the episodes (same as number of tested designs). It can be observed that the agent
very quickly learns how to design good calorimeters in less than 100k iterations. The resolution
for the four test particles is also shown and it is negatively correlated with the reward function.

Figure 3 also illustrates four designs at different stages of training. Initially, the agent does not
utilize the full sensor thickness budget, indicating a lack of understanding of the design require-
ments. Remarkably, without any prior information, the agent eventually learns the principles of
calorimeter design, demonstrating the importance of placing more layers towards the front of the
device. This reflects the distinct roles of the hadronic and electromagnetic sections of the device.
Hadronic particles (e.g., protons, neutrons, and pions) primarily interact via the strong nuclear
force, while electromagnetic particles (e.g., electrons and photons) interact through the electromag-
netic force. The energy deposit profiles of these particles differ significantly, and a well-designed
calorimeter must account for both1. Electromagnetic showers have a much shorter longitudinal
length compared to hadronic showers, necessitating closer sensor spacing in the initial sections of
the device. We refer to Fabjan and Gianotti (2003) for further discussion on the rich physics in
calorimeters. Additionally, it is notable that the agent chooses layers with varying thicknesses to

1A common solution to this is to have two calorimeters, an electromagnetic calorimeter and hadronic calorimeter.
We do not consider such a possibility in this study but is perfectly feasible within the framework of RL.
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optimize the layout, allowing more layers to be placed and further demonstrating its ability to
learn effective design strategies.

Table I quantitatively shows the performance metrics. The results are also compared to a base-
line design. In the baseline design, the calorimeter is segmented at ∼ 22·X0 of the material between
the electromagnetic and hadronic sections, where X0 refers to the radiation length. Afterwards,
equal numbers of hadronic and electromagnetic layers are placed with a thickness of 200 µm. The
electromagnetic resolution is within the statistical error however, the hadronic resolution is signif-
icantly better in the calorimeter designed with RL. This result is expected as the nature of the
physics of the hadronic processes is significantly more complex (Fabjan and Gianotti, 2003) and
requires more intelligent placement of the layers to get the most benefit.

50 GeV EM 100 GeV EM 50 GeV Had 100 GeV Had
Baseline design 8.24± 0.16 5.94± 0.12 34.13± 0.68 24.48± 0.49
RL design 8.15± 0.16 5.83± 0.12 25.27± 0.51 17.79± 0.36

Table I: Calorimeter resolution of the RL based design vs a reference baseline design. All numbers
are in percentage

4.2 Spectrometer Design

A spectrometer is a instrument in particle physics experiments, designed to measure the momen-
tum of charged particles by analyzing their trajectories as they traverse a magnetic field. Unlike
calorimeters, which absorb particles to measure their total energy, spectrometers provide indirect
energy measurements by leveraging the relationship between a particle’s charge, momentum, and
the curvature of its path in a magnetic environment. This curvature depends on the particle’s
momentum, with more energetic particles following less curved trajectories. Spectrometers are
typically equipped with tracking stations, which are high-precision detectors placed at intervals
along the particle’s path. These stations record the position and trajectory of the particle be-
fore, during, or after its movement through the magnetic field, enabling the reconstruction of its
momentum. Tracking stations often use advanced technologies, such as silicon strip detectors or
drift chambers, to achieve the high spatial resolution necessary for accurate measurements. In
this case we assume tracking stations that are made of silicon pixels, which are most useful not
only for momentum resolution but also for pattern recognition. By combining data from multiple
tracking stations, the spectrometer allows physicists to infer key properties of the particle, such as
its momentum and charge.

In our experiment, a magnet is positioned at the center of the setup, spanning the region from
z = 10m to z = 11m along the z-axis. The magnetic field is oriented along the y-axis with a
uniform strength of 1T. A particle initially travels in a straight-line trajectory2 (called Region A)
until it enters the magnetized region. Within this region, the particle experiences a Lorentz force
acting along the x- and y-axes. Upon exiting the magnetic field, the particle resumes a straight-line
trajectory in Region C2. The angle between the trajectories before and after the magnet can be
approximated as

pXZ =
0.3

2 sin
(
θ
2

) . (3)

Further, in the simulation, multiple scattering is also taken into account. The standard devia-
tion of the multiple scattering is estimated as

σθ =
13.6 GeV

·p
· Z ·

√
x

X0
·
(
1 + 0.038 · ln

(
x

X0

))
, (4)

with Z being the atomic number of the material, X0, the radiation length and x, the thick-
ness (Groom and Klein, 2000). The numbers correspond to 200 µm silicon sensors.

The agent is tasked with choosing the spatial locations where to place the tracking stations as
well as granularity of each tracking station. The spatial location is chosen as the continuous action
whilst the granularity selection task is modeled as a discrete action. The discrete action (Agran)
can be between 0 and 9 and the granularity of the placed sensor is then chosen as (Agran + 10) ·
500Agran + 10) · 500) for (x × y). This means that each tracking station must have a minimum
granularity of 500 × 500 pixels and a maximum of 1000 × 1000. This makes the action space 12
dimensional. The resource budget is defined as having maximum 6M sensors, at which point the

2Approximately straight line, considering the multiple scattering discussed later
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Figure 3: Design of uniform sampling calorimeter with proximal policy optimization (PPO). The
top two plot shows the performance of the calorimeter as a function of iterations. The performance

is represented by the resolution, calculated as
σ(Epred/Etrue)
µ(Epred/Etrue)

, where σ denotes the standard deviation

and µ denotes the mean. The middle plot shows the cumulative reward during the episode (one
design). In both of these figures, the the best design (as per the cumulative reward value) is
chosen over intervals of 5000 designs and the resolution for different types of particles is plotted.
The x-axis is shared between the two figures. The bottom plot shows the best designs found during
different intervals

episode terminates. The episode can also terminate if current z location goes beyond the defined
space i.e. > 21.0 m. The current configuration of the trackers that the agent has selected so
far is the state of the environment. However, similar to the calorimeter design, the experiment is
designed to be partially observable. Therefore, only the longitudinal location the agent is currently
at and the number of layers placed so far is employed as Ot.

To allow momenta reconstruction, at least three tracking stations must be placed both in Region
A and Region C. If this does not happen, the agent receives a −400 + 20 ∗Ncorrect reward, where
Ncorrect refers to the number of correctly placed stations, which maxes out at six (max of three
in the two regions). Once the training reaches the stage where the agent knows it needs at least
three tracking stations in the two regions, the design score is computed as follows
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Figure 4: Design of spectrometer with Reinforcement Learning. The top two plot shows the
performance of the calorimeter as a function of iterations. The performance is represented by the

resolution, calculated as
σ(ppred/ptrue)
µ(ppred/ptrue)

, where σ denotes the standard deviation and µ denotes the

mean. The top plot shows the cumulative reward during the episode (one design). In both of
these figures, the the best design (as per the cumulative reward value) is chosen over intervals
of 400 designs and the resolution for different types of particles is plotted. The x-axis is shared
between the two figures. The bottom illustration shows the best designs found during different
intervals during the training process. The magnet section is shown as the stripped section at the
very middle and the number of sensors is shown as a color bar on the right side

S10 = −3 ·
(
95−min(eff10, 95) + max(res10, 3)− 3

)
, (5)

S100 = −3 ·
(
95−min(eff100, 95) + max(res100, 8)− 8

)
, (6)

S = S10 + S100 . (7)

Here, eff refers to efficiency which is defined as the fraction of the test particles where 0.5 <
pmeasured/ptrue < 2.0. This would occur in case of a mismatch in the pattern recognition (described
below). The score is designed so the algorithm focuses on the resolution and efficiency is only taken
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into account if it is sufficiently large and hence, the associated penalty with efficiency drops to 0 if
it is higher than 95%. The design score S is then given as the reward at the final time step, which
also includes the penalty for missing tracking stations. In the intermediate time steps, a penalty of
−50 is awarded as a reward if two tracking stations are placed too close to each other (i.e. < 0.1 m).
The test particle always has all the momenta in the direction of z while 10 background particles
are also placed around uniformly distributed in the azimuthal range of (0, arctan (0.1/20.0)). The
distribution of the background particle is symmetric in the polar angle.

Figure 5 visualizes the process of line fitting. It is performed as follows:

1. Initial Setup:

• Begin by selecting the hit in the first tracking station using the truth information.

• Perform a straight-line fit between this hit and all hits in the second tracking station,
using the bin centers of the second station.

2. Accounting for Uncertainty:

• While fitting the line, the uncertainty associated with the bin width is incorporated into
the calculations. The bin width uncertainty is accounted for by considering the standard
deviation of a uniform distribution over the bin width in both the x and y dimensions,

computed as
√

2
12 · 1

Bi+1
, where Bi+1 represents the granularity of the bins in the i-th

station. This single factor accounts for contributions from both x and y dimensions. No
uncertainty is assumed in the z dimension.

3. Iterative Line Fitting:

• Identify the closest hit in the next tracking station based on the initial fit.

• Perform a line fit that includes this newly identified hit, taking into account the uncer-
tainty associated with the granularity of the new tracking station.

• Repeat this process iteratively until hits from all tracking stations in Region A have
been included in the fit.

4. Selecting the Best Fit:

• Evaluate all possible line fits for Region A (considering the hits in the second tracking
station) and select the one with the lowest residuals as the predicted trajectory.

5. Region C Fit:

• Repeat the above process for Region C. Start by taking the first hit from the truth
information to avoid complexities such as the fringe field effects.

6. Momentum Calculation in the (x, z) Plane:

• Using the trajectories determined for Region A and Region C, compute the momentum
in the (x, z) plane (pXZ) using Equation 3.

7. Momentum Calculation in the y Plane and Overall Momentum:

• Use the trajectory to compute the momentum in the y plane (pY ).

• Combine pXZ and pY to calculate the particle’s total momentum (p).

To achieve high performance, we utilized CUDA programming and PyTorch vectorization,
enabling us to test a single design in approximately 0.06 seconds, employing 0.12M events and
1.32M particles.

Figure 4 shows the training process. The reward is shown as a function of the number of designs
tested and it can be observed the agent quickly learns how the spectrometer looks like. At the
start, the reward is very low (< 300) as less than required number of tracking stations have been
placed. Further, this results in constant values and discontinuous jumps in the reward function.
This is not a problem for RL where the agents know how to successfully navigate such spaces. It
can also be observed that the resolution and efficiency closely correspond to the reward. Here,
the breaks at the start also correspond to the region where these metrics are undefined as enough
tracking stations have not yet been placed.

The same figure also shows the best designs at different training stages. In the best designs, the
tracking stations are not always placed to maximize the span. This is because if placed too early,
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Figure 5: The top left figure shows the process of line fitting in Region A and right figure, Region
C. Bottom figure shows the reconstructed trajectories in the two regions. The color of the line
correspond to goodness of the fit or residuals and a darker color indicates lower residuals

the multiple scattering will worsen the resolution. Therefore, the agent has to learn to balance
multiple factors and choose the best design.

Table II show the results quantitatively. The results are also compared with two baseline
design. The first baseline design, three equidistant tracking stations are placed in both Region
A and Region C. In the second baseline design, four such tracking stations are placed. It can be
observed that the spectrometer designed by the RL agent has significantly better performance.

10 GeV Eff 10 GeV Res 100 GeV Eff 100 GeV Res
Baseline design 1 89.0695± 0.1275 6.48± 0.03 98.0982± 0.0558 13.83± 0.06
Baseline design 2 93.7342± 0.0989 5.97± 0.03 99.1317± 0.0379 13.15± 0.05
RL design 100.0000± 0.0000 3.74± 0.02 99.9417± 0.0099 7.87± 0.03

Table II: Spectrometer resolution and efficiency of the RL based design vs two reference baseline
designs. All numbers are in percentages

5 Outlook

The presented studies demonstrate the applicability of RL for instrument design using simple
examples. In this section, we discuss how these works can be extended for more complex instrument
design problems.

5.1 Flexible Reconstruction Algorithms

In the study presented on spectrometer design, a straightforward reconstruction algorithm was
employed. However, for scenarios involving more generic and irregular detector geometries, such
algorithms often prove insufficient. In such cases, advanced approaches like graph neural networks
(GNNs) can provide a significant advantage. For instance, Qasim et al. (2022) demonstrated the
application of dynamic graph neural networks (Qasim et al., 2019) for end-to-end reconstruction
tasks by utilizing the Object Condensation technique (Kieseler, 2020). This method has shown
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robust performance in handling complex and irregular environments, making it a promising tool
for detector design optimization.

One potential application of these advanced methods is in optimizing the transverse segmen-
tation of calorimeters, where traditional algorithms may fall short. Additionally, as evidenced by
the work of Reuter et al. (2024), dynamic graph neural networks can also be track reconstruction.
These include scenarios such as designing tracker systems that must operate within magnetic fields,
where the simpler reconstruction algorithms described in Section 4.2 are not suitable.

Moreover, such graph-based algorithms offer the flexibility to be jointly optimized alongside
RL agents’ policies. This simultaneous optimization could enable a more integrated approach
to detector design, leveraging the strengths of both advanced machine learning techniques and
physics-driven optimization frameworks. These developments highlight the potential of GNNs to
revolutionize tasks that require intricate geometrical reasoning and adaptive design strategies in
experimental physics.

5.2 Amortization of Reward and Cost

In the presented studies, a large number of simulations are performed to get a good estimate of
the design score. This makes it convenient for the RL algorithm as the variance in the reward
function is low. As an example, the SHiP Muon Shield aims to reduce the flux rate by over six
orders of magnitude and if a design under consideration already gives multiple resulting hits after
testing a few hundred, this design can be easily ruled out. Similar argument can be made also
for the calorimeter. Modern RL algorithms are designed to operate in the conditions of such high
variance returns i.e. the reward function is stochastic. Employing this property in future work can
award computational benefits making the discovery process quicker.

5.3 Off-policy algorithms

In this work, PPO has been used, which is an on-policy algorithm. This implies that any time the
policy changes, the agent must collect a new set of experiences based on the updated policy to
continue learning effectively and discard the old ones (called experience replay in RL terminology).
Therefore, the algorithm is not the most sample efficient. This was as choice of convenience in the
conducted study to quickly get results. However, techniques such as prioritized experience replay
Horgan et al. (2018) will allow the use of off-policy algorithms which are more computationally
efficient. As an alternate, on-policy but continual learners can also be employed instead which
don’t suffer from catastrophic forgetting French (1999), a particularly pronounced problem faced
by neural networks.

5.4 Better Policy and Value Networks, and Improving Observability:

In the presented experiment of calorimeter design, the observation space was only two dimensional,
representing the longitudinal dimension as well as the thickness budget used, which forces the agent
to operate in a highly partially observable environment. Given that the full design is known, one
can improve this by employing a better representation of the current state. For only longitudinal
segmentation, this can be represented as a vector, as in the example of the spectrometer design
but in end-to-end optimization, a more generic graph neural network could be used. For instance,
a GNN was employed by Mirhoseini et al. (2022) for the chip placement problem. They will also
provide more powerful policy and value network compared to the fully connected neural networks
a choice of convenience in the experiments presented in this work.

5.5 Surrogate simulators

The computational expense of Monte Carlo simulators, particularly in propagating particles through
dense materials, has spurred extensive research into faster machine learning-based simulation alter-
natives. Initially focused on simulating calorimeter showers (Paganini et al., 2018) using generative
adversarial networks (GANs) (Goodfellow et al., 2014), recent advances have expanded into the fast
simulation of particle jets (Touranakou et al., 2022) and other final-state observables. Researchers
have explored a variety of generative models, including Variational Autoencoders (VAEs) (Kingma
and Welling, 2014), GANs, Normalizing Flows (Rezende and Mohamed, 2015), and other deep
generative architectures, each contributing unique advantages in accuracy and efficiency. These
ML-driven methods now play a vital role in reducing simulation time, making it feasible to handle
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the large-scale data demands of high-energy physics experiments while maintaining high fidelity in
modeling complex particle interactions and responses within detectors.

Even more recently, research has explored ML-based fast simulation of detector agnostic re-
sponses (Buhmann et al., 2023, 2024). Here, diffusion models (Ho et al., 2020) were employed to
generate the detector responses as point clouds, and this can be extended to non-uniform sampling
calorimeters where regular grid structures are absent. It is also possible to extend this work to
condition it on detector configuration so one can learn the truly detector agnostic response.

6 Conclusion

In this work, we explored and demonstrated the application of Reinforcement Learning (RL) as a
novel approach for instrument design, showcasing its effectiveness through two distinct empirical
studies. The first study focused on the design of a calorimeter, while the second targeted the design
of a spectrometer. Both studies utilized a RL agent that employed a mixed action space framework
to construct these instruments layer by layer, simulating a practical, iterative design process. This
mixed action space combined continuous and discrete actions to account for the diverse aspects of
the design process, thereby allowing the agent to make comprehensive decisions.

In the context of the calorimeter and spectrometer designs, the continuous actions allowed the
agent to determine optimal placements of the detector components (i.e. active layers or tracking
stations). These components are integral to the functionality of the instruments, influencing factors
such as resolution and detection efficiency. On the other hand, the discrete actions enabled the
agent to make categorical decisions about the physical properties of these components, such as the
granularity of the sensor layers or the thickness of the detectors. By combining these two types of
actions, the RL agent could effectively navigate the complex and multidimensional design space
without requiring extensive prior knowledge or predefined templates.

We employed straightforward yet effective reward functions to guide the agent during the design
process. These reward functions quantitatively assessed the performance of the proposed designs
based on relevant metrics, such as detection accuracy, energy resolution, or overall efficiency. The
simplicity of these reward functions underscores the robustness and adaptability of our method-
ology. Remarkably, the RL agent was able to autonomously generate high-performing designs for
both instruments, showcasing its ability to learn and optimize effectively even in the absence of
significant domain-specific priors.

This study highlights the advantages of RL in addressing instrument design challenges, partic-
ularly when compared to differentiable optimization methods. Differentiable approaches typically
require a well-defined, parameterized model of the instrument, which can limit their applicability
in scenarios where such models are unavailable or difficult to construct. In contrast, our RL-based
methodology circumvents these constraints by directly interacting with the design environment
and placing sequentially. Further, through exploration and trial-and-error learning, the local min-
ima are also effectively avoided. However, the differentiable approaches could still potentially
complement the proposed method by fine-tuning the proposed design to make it final.

Looking ahead, we see tremendous opportunities to extend this approach to even more intricate
design challenges. Future research will aim to apply this methodology to the development of more
complex instruments, potentially involving multi-objective optimization and additional constraints
that better reflect real-world scenarios. By integrating advanced RL techniques, such as hierarchical
RL or model-based approaches, we aspire to further enhance the capabilities and versatility of
this design paradigm. These advancements will add tremendous value to future projects like the
Future Circular Collider (FCC), where achieving unprecedented energy scales will require the most
optimized instrumentation.
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